AI puts on poker face to beat world champs

AI puts on poker face to beat world champs

2 Min Read

by Ken Wieland

15 July 2019

LONDON -- In what was widely hailed as a milestone for AI and machine learning, a robot going by the name of Pluribus beat some of the best poker players in the world.

Developed by scientists at Carnegie Mellon University in collaboration with Facebook AI, Pluribus defeated leading professionals in games of no-limit Texas Hold’em poker.

The victory was especially significant, said AI experts, given thesubtle stratagems of bluff and counter bluff that every successful poker playerneeds. Making things tougher for the bot was that it played five humans in a six-playergame, yet it apparently sailed through this test with flying colours.

This is not the first time AI has been used to see off world-class humanopponents. In 2016, a machine called AlphaGo – built by Google-owned Deep Mind– beat Lee Sedol, 18-time world champion at Go, an abstract strategy board gamefor two players. By using machine-learning algorithms, AlphaGo makers claimedthe bot taught itself how to win the Chinese game -- soaking in thousands ofyears of accumulated wisdom -- in just 40 days. 

Related: Poker Playing AI Beats Chinese World Series of Poker Veteran

The thinking from big tech companies, which develop advanced AIalgorithms to beat humans at games of this sort, is that it will help broaden AI applications in thereal world. What those new applications might be is not entirely clear,however.

Flushed with success

Professor Sandholm, who helped develop Pluribus at Carnegie Mellon'sComputer Science Department, was fulsome in his praise for the poker-playingbot.

“Pluribus achieved superhuman performance at multi-player poker, whichis a recognised milestone in artificial intelligence,” he said. “Thus far,superhuman AI milestones in strategic reasoning have been limited to two-partycompetition. The ability to beat five other players in such a complicated gameopens up new opportunities to use AI to solve a wide variety of real-worldproblems.”

In 10,000hands of Texas Hold’em, Pluribus competed against five contestants from a poolof 13 professionals, all of whom had won more than $1 million playing poker.Every 100 hands, Pluribus raked in -- on average -- about $480 from its humancompetitors. “This is roughly the amount that elite human professionals aspireto beat weaker players by,” said Noam Brown of Facebook AI Research. Brown workedalongside Professor Sandholm in developing Pluribus.

Get the newsletter
From automation advancements to policy announcements, stay ahead of the curve with the bi-weekly AI Business newsletter.