Retail & Supply Chain
Retail & Supply Chain

Experts in AI: Succeeding in retail

Experts in AI: Succeeding in retail

by Max Smolaks
Article Image

Rashed Haq from Publicis Sapient talks about data, skills and outsourcing

Retailers might find it challenging to start with AI and machine learning – but the job gets simpler as their efforts progress, according to Rashed Haq, global head of AI, Robotics and Data at Publicis Sapient, a digital transformation consultancy owned by French advertising giant Publicis.

At the AI Summit in San Francisco, Haq presented a session on applications of AI technologies in retail. He noted that machine learning projects are much easier to scale if the same models and data are constantly repurposed across the organization.

“I was giving examples of how businesses are
using it across the board,” he told AI Business.

“And the advantage of using [AI] more broadly
across the business, rather than individual departments, because if you look at
what's going on in marketing, and what happens in the e-commerce channel, some
of the data and many of the algorithms can be reused. So, integrating those on
a single platform makes sense.

“if you look at the demand forecasting models
within the supply chain, they're built on historical sales data. But if you add
the clickstream data and the search data from the e-commerce site, and what the
customers are doing, the accuracy improves significantly. So being able to use AI
across all of those [operations] improves the quality of the results, the
performance of the business, and the advantages - you have a shared data
platform and a shared AI platform, which reduces the cost.

“I would say probably about 10 to 15 percent
of retail businesses are doing this in some form or other.”

Another point Haq made was that that the
choice between developing AI skills in-house or outsourcing this work to third
parties – frequently discussed in the industry - was actually a false choice.

“Bill Joy famously said that no matter how
many smart people you have inside the company, there are more smart people
outside of your company. And if you try to choose one or the other, there are
big downsides to both.

“You do have to build your team internally, particularly
for the decision-making components you want to keep in-house. You also want to
bring partners from outside, whether those are consulting companies like
ourselves, or startups, or other companies that have some of the products that
you can use and integrate into your APIs. You can also build your models on your
own, but there's no reason to build something that somebody else has already
built.”

Practitioner Portal - for AI practitioners

Story

Hesai and Scale AI open-source LiDAR data set for autonomous car training

6/2/2020

Scale claims this is the first time such data has been released with zero restrictions

Story

IBM adds free AI training data sets to Data Asset eXchange

5/28/2020

Big Blue has something for you

Practitioner Portal

EBooks

More EBooks

Upcoming Webinars

More Webinars

Experts in AI

Partner Perspectives

content from our sponsors

Research Reports

9/30/2019
More Research Reports

Infographics

Understanding the advantages of AI chatbots over rule-based chatbots

Infographics archive

Newsletter Sign Up


Sign Up